Product decompositions of solvable Lie groups.
Michael Wüstner (1996)
Manuscripta mathematica
Similarity:
Michael Wüstner (1996)
Manuscripta mathematica
Similarity:
Detlev Poguntke (1992)
Mathematische Zeitschrift
Similarity:
Helmut Strade, Rolf Farnsteiner (1988)
Mathematische Annalen
Similarity:
Detlev Poguntke (2010)
Colloquium Mathematicae
Similarity:
For any connected Lie group G and any Laplacian Λ = X²₁ + ⋯ + X²ₙ ∈ 𝔘𝔤 (X₁,...,Xₙ being a basis of 𝔤) one can define the commutant 𝔅 = 𝔅(Λ) of Λ in the convolution algebra ℒ¹(G) as well as the commutant ℭ(Λ) in the group C*-algebra C*(G). Both are involutive Banach algebras. We study these algebras in the case of a "distinguished Laplacian" on the "Iwasawa part AN" of a semisimple Lie group. One obtains a fairly good description of these algebras by objects derived from the semisimple...
Donald W. Barnes, Martin L. Newell (1970)
Mathematische Zeitschrift
Similarity:
Alberto C. Elduque Palomo, Vicente R. Varea Agudo (1986)
Extracta Mathematicae
Similarity:
A Lie algebra L is said to be minimal non supersolvable if all its subalgebras, except L itself, are supersolvable.
Ernest L. Stitzinger (1972)
Mathematische Zeitschrift
Similarity:
Meena Sahai (1995)
Publicacions Matemàtiques
Similarity:
Let K be a field of characteristic p > 2 and let G be a group. Necessary and sufficient conditions are obtained so that the group algebra KG is strongly Lie solvable of derived length at most 3. It is also shown that these conditions are equivalent to KG Lie solvable of derived length 3 in characteristic p ≥ 7.
John R. Faulkner (1994)
Forum mathematicum
Similarity:
Galitski, L.Yu., Timashev, D.A. (1999)
Journal of Lie Theory
Similarity:
de Graaf, W.A. (2005)
Experimental Mathematics
Similarity:
В.В. Талапов (1981)
Sibirskij matematiceskij zurnal
Similarity:
В.В. Горбацевич (1998)
Sibirskij matematiceskij zurnal
Similarity:
Wolmer V. Vasconcelos, Aron Simis (1988)
Manuscripta mathematica
Similarity:
Chunyue Wang, Qingcheng Zhang (2018)
Czechoslovak Mathematical Journal
Similarity:
We construct a 3-Lie 2-algebra from a 3-Leibniz algebra and a Rota-Baxter 3-Lie algebra. Moreover, we give some examples of 3-Leibniz algebras.