p-Torsion in Elliptic Curves over Subfields of Q (...).
S. Kamienny (1988)
Mathematische Annalen
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
S. Kamienny (1988)
Mathematische Annalen
Similarity:
Yasutsugu Fujita (2007)
Acta Arithmetica
Similarity:
L.J. Mordell (1967)
Mathematische Annalen
Similarity:
Bruce W. Jordan, Ron A. Livné (1985)
Mathematische Annalen
Similarity:
de Weger, Benjamin M.M. (1998)
Experimental Mathematics
Similarity:
J.W.S. Cassels (1953)
Mathematische Annalen
Similarity:
T.W. Cusick (1972)
Mathematische Annalen
Similarity:
Chad Schoen (1992)
Mathematische Annalen
Similarity:
Stroeker, Roel J., de Weger, Benjamin M.M. (1994)
Experimental Mathematics
Similarity:
Farzali Izadi, Foad Khoshnam, Arman Shamsi Zargar (2016)
Colloquium Mathematicae
Similarity:
We construct a family of elliptic curves with six parameters, arising from a system of Diophantine equations, whose rank is at least five. To do so, we use the Brahmagupta formula for the area of cyclic quadrilaterals (p³,q³,r³,s³) not necessarily representing genuine geometric objects. It turns out that, as parameters of the curves, the integers p,q,r,s along with the extra integers u,v satisfy u⁶+v⁶+p⁶+q⁶ = 2(r⁶+s⁶), uv = pq, which, by previous work, has infinitely many integer solutions. ...
S. Kamienny (1989)
Manuscripta mathematica
Similarity:
Darrin Doud (1998)
Manuscripta mathematica
Similarity:
Stroeker, Roel J., Tzanakis, Nikos (1999)
Experimental Mathematics
Similarity: