Invariant Submanifolds in Sasakian Manifolds.
Masahiro Kon (1976)
Mathematische Annalen
Similarity:
Masahiro Kon (1976)
Mathematische Annalen
Similarity:
SH. CHERN, CH. HSIUNG (1963)
Mathematische Annalen
Similarity:
Ṣahin, Bayram, Güneṣ, Rıfat (2008)
Beiträge zur Algebra und Geometrie
Similarity:
Chong-Kyu Han (1990)
Mathematische Annalen
Similarity:
Wolf Strübing (1979)
Mathematische Annalen
Similarity:
Kentaro Yano, Gerald D. Ludden, Masafumi Okumura (1977)
Mathematische Annalen
Similarity:
Minoru Kobayashi (1991)
Revista Matemática de la Universidad Complutense de Madrid
Similarity:
We study contact normal submanifolds and contact generic normal in Kenmotsu manifolds and in Kenmotsu space forms. Submanifolds mentioned above with certain conditions in forms space Kenmotsu are shown that they CR-manifolds, spaces of constant curvature, locally symmetric and Einsteinnian. Also, the non-existence of totally umbilical submanifolds in a Kenmotsu space form -1 is proven under a certain condition.
Klas Diederich, John Eric Fornaess (1984)
Mathematische Annalen
Similarity:
Hong, Yi, Houh, Chorng Shi (1998)
Beiträge zur Algebra und Geometrie
Similarity:
Alfred Gray (1976)
Mathematische Annalen
Similarity:
Shing-Tung Yau, Jürgen Jost (1983)
Mathematische Annalen
Similarity:
Khan, Viqar Azam, Khan, Khalid Ali (2009)
Beiträge zur Algebra und Geometrie
Similarity:
Dirk Ferus (1980)
Mathematische Annalen
Similarity:
Bayram Sahin (2009)
Annales Polonici Mathematici
Similarity:
Recently, we showed that there exist no warped product semi-slant submanifolds in Kaehler manifolds. On the other hand, Carriazo introduced anti-slant submanifolds as a particular class of bi-slant submanifolds. In this paper, we study such submanifolds in detail and show that they are useful to define a new kind of warped product submanifolds of Kaehler manifolds. In this direction, we obtain the existence of warped product hemi-slant (anti-slant) submanifolds with examples. We give...