Operators into L1 of a vector measure and applications to Banach lattices.
Guillermo P. Curbera (1992)
Mathematische Annalen
Similarity:
Guillermo P. Curbera (1992)
Mathematische Annalen
Similarity:
Heinrich P. Lotz (1974)
Mathematische Annalen
Similarity:
C.D. Aliprantis, Owen Burkinshaw (1980)
Mathematische Zeitschrift
Similarity:
N. Ghoussoub, H.P. Rosenthal (1983)
Mathematische Annalen
Similarity:
N. Ghoussoub, W.B. Johnson (1987)
Mathematische Zeitschrift
Similarity:
Ju. A. Abramovič, L. P. Janovskiĭ (1982)
Colloquium Mathematicae
Similarity:
William Feldmann (1988)
Mathematische Zeitschrift
Similarity:
Julio Flores, Pedro Tradacete (2008)
Studia Mathematica
Similarity:
It is proved that every positive Banach-Saks operator T: E → F between Banach lattices E and F factors through a Banach lattice with the Banach-Saks property, provided that F has order continuous norm. By means of an example we show that this order continuity condition cannot be removed. In addition, some domination results, in the Dodds-Fremlin sense, are obtained for the class of Banach-Saks operators.
Julio Flores, César Ruiz (2006)
Studia Mathematica
Similarity:
Given a positive Banach-Saks operator T between two Banach lattices E and F, we give sufficient conditions on E and F in order to ensure that every positive operator dominated by T is Banach-Saks. A counterexample is also given when these conditions are dropped. Moreover, we deduce a characterization of the Banach-Saks property in Banach lattices in terms of disjointness.
Radu Zaharopol (1986)
Mathematische Zeitschrift
Similarity:
V. Caselles (1985)
Mathematische Zeitschrift
Similarity:
Richard Haydon (1977)
Mathematische Zeitschrift
Similarity:
S. Simons (1975)
Mathematische Annalen
Similarity:
W.A.J. LUXEMBURG, A.C. ZAANEN (1963)
Mathematische Annalen
Similarity: