A Connection between the Integral Homology and the Centre of a Rational Linear Group.
Robert Bieri (1980)
Mathematische Zeitschrift
Similarity:
Robert Bieri (1980)
Mathematische Zeitschrift
Similarity:
Karlheinz Knapp (1978)
Mathematische Annalen
Similarity:
Christian Kassel, M. Vigué-Poirrier (1992)
Mathematische Annalen
Similarity:
J. Wolfgang SMITH (1971)
Mathematische Annalen
Similarity:
J.-C. Hausmann (1986)
Mathematische Annalen
Similarity:
Heinz-Werner Schülting (1985)
Mathematische Annalen
Similarity:
Z. Fiedorowicz, T. Pirashvili (1995)
Mathematische Annalen
Similarity:
Magnus Jacobsson (2004)
Fundamenta Mathematicae
Similarity:
We present an elementary description of Khovanov's homology of tangles [K2], in the spirit of Viro's paper [V]. The formulation here is over the polynomial ring ℤ[c], unlike [K2] where the theory was presented over the integers only.
R.E. STONG (1970)
Mathematische Annalen
Similarity:
Javier Majadas, Rodicio Antonio G. (1991)
Mathematische Annalen
Similarity:
Chung-Wu Ho (1975)
Colloquium Mathematicae
Similarity:
Broto, C., Vershinin, V.V. (2000)
Zapiski Nauchnykh Seminarov POMI
Similarity:
S. Dragotti, G. Magro, L. Parlato (2006)
Bollettino dell'Unione Matematica Italiana
Similarity:
We give, here, a geometric treatment of intersection homology theory.
Urs Stammbach (1972)
Mathematische Zeitschrift
Similarity:
Victor Snaith (1983)
Mathematische Zeitschrift
Similarity:
S. K. Kaul (1970)
Colloquium Mathematicae
Similarity:
Takuma Imamura (2021)
Archivum Mathematicum
Similarity:
In this paper, we clarify the relationship among the Vietoris-type homology theories and the microsimplicial homology theories, where the latter are nonstandard homology theories defined by M.C. McCord (for topological spaces), T. Korppi (for completely regular topological spaces) and the author (for uniform spaces). We show that McCord’s and our homology are isomorphic for all compact uniform spaces and that Korppi’s and our homology are isomorphic for all fine uniform spaces. Our homology...