The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Every Finite Complex has the Homology of a Duality Group.”

Transverse Homology Groups

S. Dragotti, G. Magro, L. Parlato (2006)

Bollettino dell'Unione Matematica Italiana

Similarity:

We give, here, a geometric treatment of intersection homology theory.

Relationship among various Vietoris-type and microsimplicial homology theories

Takuma Imamura (2021)

Archivum Mathematicum

Similarity:

In this paper, we clarify the relationship among the Vietoris-type homology theories and the microsimplicial homology theories, where the latter are nonstandard homology theories defined by M.C. McCord (for topological spaces), T. Korppi (for completely regular topological spaces) and the author (for uniform spaces). We show that McCord’s and our homology are isomorphic for all compact uniform spaces and that Korppi’s and our homology are isomorphic for all fine uniform spaces. Our homology...

Homology of representable sets

Marian Mrozek, Bogdan Batko (2010)

Annales Polonici Mathematici

Similarity:

We generalize the notion of cubical homology to the class of locally compact representable sets in order to propose a new convenient method of reducing the complexity of a set while computing its homology.