Primärkomponentenzerlegung in nichtkommunativen Ringen.
H. Fitting (1935)
Mathematische Annalen
Similarity:
H. Fitting (1935)
Mathematische Annalen
Similarity:
Serge Lang, Daniel S. Kubert (1978)
Mathematische Annalen
Similarity:
C.K. Fong, H. Radjavi (1983)
Mathematische Annalen
Similarity:
Carl L. DeVito (1973)
Mathematische Annalen
Similarity:
Serge Lang, Daniel S. Kubert (1978)
Mathematische Annalen
Similarity:
Ali, Majid M. (1996)
Beiträge zur Algebra und Geometrie
Similarity:
Israel Vainsencher (1984)
Mathematische Annalen
Similarity:
Andrew M. Tonge (1986)
Mathematische Annalen
Similarity:
P. Gorkin, R. Mortini, A. Nicolau (1995)
Mathematische Annalen
Similarity:
Earl Berkson, Richard J. Fleming, James Jamison (1976)
Mathematische Annalen
Similarity:
Keiji Izuchi (1976)
Studia Mathematica
Similarity:
C.M. Edwards, G.T. Rüttimann (1991)
Mathematische Annalen
Similarity:
James J. Madden, Niels Schwartz (1997)
Revista Matemática de la Universidad Complutense de Madrid
Similarity:
Experience shows that in geometric situations the separating ideal associated with two orderings of a ring measures the degree of tangency of the corresponding ultrafilters of semialgebraic sets. A related notion of separating ideals is introduced for pairs of valuations of a ring. The comparison of both types of separating ideals helps to understand how a point on a surface is approached by different half-branches of curves.
R. NIELSEN, C. SLOYER (1970)
Mathematische Annalen
Similarity: