FC-nilpotent products of hypercentral groups.
B. AMBERG, S. Franciosi, F. Giovanni (1995)
Forum mathematicum
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
B. AMBERG, S. Franciosi, F. Giovanni (1995)
Forum mathematicum
Similarity:
Elisabeth A. Pennington (1973)
Mathematische Zeitschrift
Similarity:
A.L. Carey, W. Moran, C.E.M. Pearce (1995)
Mathematische Annalen
Similarity:
Ernest Płonka (1974)
Colloquium Mathematicae
Similarity:
Peter Hilton, Robert Militello (1992)
Publicacions Matemàtiques
Similarity:
We identify two generalizations of the notion of a finitely generated nilpotent. Thus a nilpotent group G is fgp if Gp is fg as p-local group for each p; and G is fg-like if there exists a fg nilpotent group H such that Gp ≅ Hp for all p. The we have proper set-inclusions: {fg} ⊂ {fg-like} ⊂ {fgp}. We examine the extent to which fg-like nilpotent groups satisfy the axioms for...
Ernest Plonka (1979)
Mathematische Annalen
Similarity:
D. Segal, F.J. Grunewald, L.S. Sterling (1982)
Mathematische Zeitschrift
Similarity:
Artemovych, O. (2002)
Serdica Mathematical Journal
Similarity:
We characterize the groups which do not have non-trivial perfect sections and such that any strictly descending chain of non-“nilpotent-by-finite” subgroups is finite.
John G. Thompson, Walter Feit, Marshall jr. Hall (1960)
Mathematische Zeitschrift
Similarity:
Srinivasan, S. (1987)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Chih-Han Sah (1957/58)
Mathematische Zeitschrift
Similarity:
J.K. Truss, E.K. Burke (1995)
Forum mathematicum
Similarity:
John S. Rose (1968)
Mathematische Zeitschrift
Similarity: