Displaying similar documents to “On the vanishing of Hochschild homology of locally complete intersections.”

Homology of representable sets

Marian Mrozek, Bogdan Batko (2010)

Annales Polonici Mathematici

Similarity:

We generalize the notion of cubical homology to the class of locally compact representable sets in order to propose a new convenient method of reducing the complexity of a set while computing its homology.

Relationship among various Vietoris-type and microsimplicial homology theories

Takuma Imamura (2021)

Archivum Mathematicum

Similarity:

In this paper, we clarify the relationship among the Vietoris-type homology theories and the microsimplicial homology theories, where the latter are nonstandard homology theories defined by M.C. McCord (for topological spaces), T. Korppi (for completely regular topological spaces) and the author (for uniform spaces). We show that McCord’s and our homology are isomorphic for all compact uniform spaces and that Korppi’s and our homology are isomorphic for all fine uniform spaces. Our homology...

On the first homology of Peano continua

Gregory R. Conner, Samuel M. Corson (2016)

Fundamenta Mathematicae

Similarity:

We show that the first homology group of a locally connected compact metric space is either uncountable or finitely generated. This is related to Shelah's well-known result (1988) which shows that the fundamental group of such a space satisfies a similar condition. We give an example of such a space whose fundamental group is uncountable but whose first homology is trivial, showing that our result does not follow from Shelah's. We clarify a claim made by Pawlikowski (1998) and offer...

Steenrod homology

Yu. T. Lisitsa, S. Mardešić (1986)

Banach Center Publications

Similarity:

A computation in Khovanov-Rozansky homology

Daniel Krasner (2009)

Fundamenta Mathematicae

Similarity:

We investigate the Khovanov-Rozansky invariant of a certain tangle and its compositions. Surprisingly the complexes we encounter reduce to ones that are very simple. Furthermore, we discuss a "local" algorithm for computing Khovanov-Rozansky homology and compare our results with those for the "foam" version of sl₃-homology.