Special Connections on Almost-Multifoliate Riemannian Manifolds.
Luis A. Cordero (1975)
Mathematische Annalen
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Luis A. Cordero (1975)
Mathematische Annalen
Similarity:
Kurek, J., Mikulski, W.M. (2007)
Lobachevskii Journal of Mathematics
Similarity:
Thomas. Peternell, Michal Szurek (1992)
Mathematische Annalen
Similarity:
S. SAWAKI (1962)
Mathematische Annalen
Similarity:
P. WILKER (1959)
Mathematische Annalen
Similarity:
Shing-Tung Yau (1974)
Mathematische Annalen
Similarity:
Qi-Ming Wang (1987)
Mathematische Annalen
Similarity:
Jiayu Li (1996)
Mathematische Annalen
Similarity:
Thomas Peternell, Frédéric Campana (1991)
Mathematische Annalen
Similarity:
Leon Karp (1985)
Mathematische Annalen
Similarity:
Gerrit Wiegmink (1995)
Mathematische Annalen
Similarity:
K.H. Mayer (1975)
Mathematische Annalen
Similarity:
Peter Löffler, Larry Smith (1974)
Mathematische Zeitschrift
Similarity:
Mariusz Plaszczyk (2015)
Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica
Similarity:
If (M, g) is a Riemannian manifold then there is the well-known base preserving vector bundle isomorphism TM → T*M given by v → g(v, –) between the tangent TM and the cotangent T*M bundles of M. In the present note first we generalize this isomorphism to the one JrTM → JrT*M between the r-th order prolongation JrTM of tangent TM and the r-th order prolongation JrT*M of cotangent T*M bundles of M. Further we describe all base preserving vector bundle maps DM(g) : JrTM → JrT*M depending...