Splitting of separatrices in Hamiltonian systems with one and a half degrees of freedom.
Delshams, Amadeu, Seara, Tere M. (1997)
Mathematical Physics Electronic Journal [electronic only]
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Delshams, Amadeu, Seara, Tere M. (1997)
Mathematical Physics Electronic Journal [electronic only]
Similarity:
G.A. Miller (1905)
Mathematische Annalen
Similarity:
E. Zenhder (1975)
Publications mathématiques et informatique de Rennes
Similarity:
Boris Khesin (1993)
Recherche Coopérative sur Programme n°25
Similarity:
F. TAKENS (1970)
Mathematische Annalen
Similarity:
Antonio Ambrosetti, Giovanni Mancini (1981)
Mathematische Annalen
Similarity:
Vittorio Coti Zelati, Ivar Ekeland, Eric Séré (1990)
Mathematische Annalen
Similarity:
Carsten Thomassen (1973)
Mathematische Annalen
Similarity:
Antonio Ambrosetti, V. Coti Zelati (1989)
Mathematische Zeitschrift
Similarity:
Kazuo Okamoto (1986)
Mathematische Annalen
Similarity:
Henryk Żołądek (2011)
Banach Center Publications
Similarity:
The first and the second Painlevé equations are explicitly Hamiltonian with time dependent Hamilton function. By a natural extension of the phase space one gets corresponding autonomous Hamiltonian systems in ℂ⁴. We prove that the latter systems do not have any additional algebraic first integral. In the proof equations in variations with respect to a parameter are used.
H. Hofer, K. Wysocki (1990)
Mathematische Annalen
Similarity:
Gary Chartrand, S. F. Kapoor (1974)
Colloquium Mathematicae
Similarity:
Misha Bialy, Leonid Polterovich (1992)
Mathematische Annalen
Similarity:
Jens-P. Bode, Anika Fricke, Arnfried Kemnitz (2015)
Discussiones Mathematicae Graph Theory
Similarity:
In 1980 Bondy [2] proved that a (k+s)-connected graph of order n ≥ 3 is traceable (s = −1) or Hamiltonian (s = 0) or Hamiltonian-connected (s = 1) if the degree sum of every set of k+1 pairwise nonadjacent vertices is at least ((k+1)(n+s−1)+1)/2. It is shown in [1] that one can allow exceptional (k+ 1)-sets violating this condition and still implying the considered Hamiltonian property. In this note we generalize this result for s = −1 and s = 0 and graphs that fulfill a certain connectivity...
Patricio L. Felmer (1990)
Manuscripta mathematica
Similarity:
Andrzej Szulkin (1989)
Mathematische Annalen
Similarity: