On the Structure of Non-Weakly Compact Operators on Banach Lattices.
N. Ghoussoub, T. Figiel, W.B. Johnson (1981)
Mathematische Annalen
Similarity:
N. Ghoussoub, T. Figiel, W.B. Johnson (1981)
Mathematische Annalen
Similarity:
N. Ghoussoub, W.B. Johnson (1987)
Mathematische Zeitschrift
Similarity:
C.D. Aliprantis, Owen Burkinshaw (1980)
Mathematische Zeitschrift
Similarity:
Heinrich P. Lotz (1974)
Mathematische Annalen
Similarity:
William Feldmann (1988)
Mathematische Zeitschrift
Similarity:
Radu Zaharopol (1986)
Mathematische Zeitschrift
Similarity:
Ju. A. Abramovič, L. P. Janovskiĭ (1982)
Colloquium Mathematicae
Similarity:
N. Ghoussoub, M. Talagrand (1979)
Mathematische Annalen
Similarity:
J.L. KELLEY, T.P. SRINIVASAN (1970/71)
Mathematische Annalen
Similarity:
Julio Flores, Pedro Tradacete (2008)
Studia Mathematica
Similarity:
It is proved that every positive Banach-Saks operator T: E → F between Banach lattices E and F factors through a Banach lattice with the Banach-Saks property, provided that F has order continuous norm. By means of an example we show that this order continuity condition cannot be removed. In addition, some domination results, in the Dodds-Fremlin sense, are obtained for the class of Banach-Saks operators.
N. Ghoussoub, H.P. Rosenthal (1983)
Mathematische Annalen
Similarity:
Feldman, W., Piston, C., Piston, Calvin E. (1991)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Richard Haydon (1977)
Mathematische Zeitschrift
Similarity:
G.A. JENSEN (1969)
Mathematische Annalen
Similarity:
Julio Flores, César Ruiz (2006)
Studia Mathematica
Similarity:
Given a positive Banach-Saks operator T between two Banach lattices E and F, we give sufficient conditions on E and F in order to ensure that every positive operator dominated by T is Banach-Saks. A counterexample is also given when these conditions are dropped. Moreover, we deduce a characterization of the Banach-Saks property in Banach lattices in terms of disjointness.