A finiteness property and an automatic structure for Coxeter groups.
Brigitte Brink, Robert B. Howlett (1993)
Mathematische Annalen
Similarity:
Brigitte Brink, Robert B. Howlett (1993)
Mathematische Annalen
Similarity:
William J. Floyd, Steven P. Plotnick (1988)
Inventiones mathematicae
Similarity:
J.W. Cannon, Ph. Wagreich (1992)
Mathematische Annalen
Similarity:
Ruth Charney (1995)
Mathematische Annalen
Similarity:
Svetlana Katok (1985/86)
Mathematische Annalen
Similarity:
Louis Funar, Martha Giannoudovardi, Daniele Ettore Otera (2015)
Fundamenta Mathematicae
Similarity:
We prove that the semistability growth of hyperbolic groups is linear, which implies that hyperbolic groups which are sci (simply connected at infinity) have linear sci growth. Based on the linearity of the end-depth of finitely presented groups we show that the linear sci is preserved under amalgamated products over finitely generated one-ended groups. Eventually one proves that most non-uniform lattices have linear sci.
Ch. Pommerenke (1981)
Mathematische Annalen
Similarity:
Teruhiko Soma (1992)
Mathematische Annalen
Similarity:
G. BAUMSLAG, T. TAYLOR (1968)
Mathematische Annalen
Similarity:
Ruth Charney (1992)
Mathematische Annalen
Similarity:
A.G.R. STEWART (1970)
Mathematische Annalen
Similarity:
S. MESKIN (1970)
Mathematische Annalen
Similarity:
Cayley (1878)
Mathematische Annalen
Similarity: