Instanton invariants of ...P2 via topology.
D. Kotschick, P. Lisca (1995)
Mathematische Annalen
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
D. Kotschick, P. Lisca (1995)
Mathematische Annalen
Similarity:
Jean Barge (1989)
Mathematische Annalen
Similarity:
K.R. Mount (1973)
Mathematische Annalen
Similarity:
Cayley (1871)
Mathematische Annalen
Similarity:
H.H. JOHNSON (1962)
Mathematische Annalen
Similarity:
R.M. Winger (1925)
Mathematische Annalen
Similarity:
Derek Hacon, Washington Mio (1987/88)
Mathematische Annalen
Similarity:
W.B.R. Lickorish (1991)
Mathematische Annalen
Similarity:
P. Mammone, J.-P. Tignol, A. Wadsworth (1991)
Mathematische Annalen
Similarity:
Dmitri I. Panyushev (1995)
Mathematische Annalen
Similarity:
Eduardo Friedman (1985)
Mathematische Annalen
Similarity:
H.E.A. Campbell, I.P. Hughes (1996)
Mathematische Annalen
Similarity:
A.D. MichaI, D.H. Hyers (1939)
Mathematische Annalen
Similarity:
K. JÄNICH (1970)
Mathematische Annalen
Similarity:
Yuka Kotorii (2014)
Fundamenta Mathematicae
Similarity:
We define finite type invariants for cyclic equivalence classes of nanophrases and construct universal invariants. Also, we identify the universal finite type invariant of degree 1 essentially with the linking matrix. It is known that extended Arnold basic invariants to signed words are finite type invariants of degree 2, by Fujiwara's work. We give another proof of this result and show that those invariants do not provide the universal one of degree 2.