Variational principles for differential equations with symmetries and conservation laws. I. Second order scalar equations.
Ian M. Anderson, Juha Pohjanpelto (1994)
Mathematische Annalen
Similarity:
Ian M. Anderson, Juha Pohjanpelto (1994)
Mathematische Annalen
Similarity:
Viorel Barbu (1982)
Mathematische Annalen
Similarity:
Gerhard Ströhmer (1985)
Mathematische Annalen
Similarity:
E.J. McShane (1934)
Mathematische Annalen
Similarity:
A. Mayer (1969)
Mathematische Annalen
Similarity:
Charlotte Angas Scott (1899)
Mathematische Annalen
Similarity:
H.J. Baker (1893)
Mathematische Annalen
Similarity:
F. SEVERI, G. Castelnuovo, F. Enriques (1925)
Mathematische Annalen
Similarity:
Capon. R.S. (1954)
Mathematische Annalen
Similarity:
J. NIETO (1965/66)
Mathematische Annalen
Similarity:
Jana Musilová, Stanislav Hronek (2016)
Communications in Mathematics
Similarity:
As widely accepted, justified by the historical developments of physics, the background for standard formulation of postulates of physical theories leading to equations of motion, or even the form of equations of motion themselves, come from empirical experience. Equations of motion are then a starting point for obtaining specific conservation laws, as, for example, the well-known conservation laws of momenta and mechanical energy in mechanics. On the other hand, there are numerous examples...
Klaus Steffen, Henry C. Wente (1978)
Mathematische Zeitschrift
Similarity: