Self-Equivalences of (n ? 1)-Connected 2n-Manifolds.
P.J. KAHN (1969)
Mathematische Annalen
Similarity:
P.J. KAHN (1969)
Mathematische Annalen
Similarity:
Sören Illman (1978)
Mathematische Annalen
Similarity:
Jongsu Kim (1993)
Mathematische Annalen
Similarity:
Claude LeBrun, Michael Singer (1994)
Mathematische Annalen
Similarity:
David M. Austin (1995)
Mathematische Annalen
Similarity:
E. Luft (1985)
Mathematische Annalen
Similarity:
Thomas Peternell (1986)
Mathematische Annalen
Similarity:
Amir Assadi, Dan Burghelea (1981)
Mathematische Annalen
Similarity:
C.B. Thomas (1972)
Mathematische Annalen
Similarity:
Andrew John Sommese (1974)
Mathematische Annalen
Similarity:
Chao-Chu Liang (1976)
Mathematische Annalen
Similarity:
Zhi Lü, Mikiya Masuda (2009)
Colloquium Mathematicae
Similarity:
We consider locally standard 2-torus manifolds, which are a generalization of small covers of Davis and Januszkiewicz and study their equivariant classification. We formulate a necessary and sufficient condition for two locally standard 2-torus manifolds over the same orbit space to be equivariantly homeomorphic. This leads us to count the equivariant homeomorphism classes of locally standard 2-torus manifolds with the same orbit space.
John J. O'Sullivan (1974)
Mathematische Annalen
Similarity: