Some congruence property of modular forms.
Shoyu Nagaoka (1997)
Manuscripta mathematica
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Shoyu Nagaoka (1997)
Manuscripta mathematica
Similarity:
Alina Carmen Cojocaru, Ernst Kani (2004)
Acta Arithmetica
Similarity:
SoYoung Choi, Chang Heon Kim (2015)
Open Mathematics
Similarity:
We find linear relations among the Fourier coefficients of modular forms for the group Г0+(p) of genus zero. As an application of these linear relations, we derive congruence relations satisfied by the Fourier coefficients of normalized Hecke eigenforms.
Torleiv Klove (1970)
Mathematica Scandinavica
Similarity:
R. W. K. Odoni (1985)
Banach Center Publications
Similarity:
Gunnar Dirdal (1976)
Mathematica Scandinavica
Similarity:
Winfried Kohnen (2004)
Acta Arithmetica
Similarity:
Vernikov, Boris M. (2000)
Beiträge zur Algebra und Geometrie
Similarity:
Gunnar Dirdal (1972)
Mathematica Scandinavica
Similarity:
Marvin Knopp, Geoffrey Mason (2003)
Acta Arithmetica
Similarity:
S. Raghavan, S. Böcherer (1988)
Journal für die reine und angewandte Mathematik
Similarity:
Sunder Sal (1965)
Mathematische Zeitschrift
Similarity:
Rajender Adibhatla, Jayanta Manoharmayum (2012)
Acta Arithmetica
Similarity:
J.W. Cogdell (1984)
Mathematische Annalen
Similarity:
Karen Taylor (2012)
Acta Arithmetica
Similarity:
Dohoon Choi, YoungJu Choie, Toshiyuki Kikuta (2013)
Acta Arithmetica
Similarity:
Suppose that f is an elliptic modular form with integral coefficients. Sturm obtained bounds for a nonnegative integer n such that every Fourier coefficient of f vanishes modulo a prime p if the first n Fourier coefficients of f are zero modulo p. In the present note, we study analogues of Sturm's bounds for Siegel modular forms of genus 2. As an application, we study congruences involving an analogue of Atkin's U(p)-operator for the Fourier coefficients of Siegel modular forms of genus...