Displaying similar documents to “On Lavine's formula for time-delay.”

Oscillation of delay differential equations

J. Džurina (1997)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

Our aim in this paper is to present the relationship between property (B) of the third order equation with delay argument y'''(t) - q(t)y(τ(t)) = 0 and the oscillation of the second order delay equation of the form y''(t) + p(t)y(τ(t)) = 0.

On the stabilization of laminated beams with delay

Kassimu Mpungu, Tijani A. Apalara, Mukhiddin Muminov (2021)

Applications of Mathematics

Similarity:

Of concern in this paper is the laminated beam system with frictional damping and an internal constant delay term in the transverse displacement. Under suitable assumptions on the weight of the delay, we establish that the system's energy decays exponentially in the case of equal wave speeds of propagation, and polynomially in the case of non-equal wave speeds.

Delay differential systems with time-varying delay: new directions for stability theory

James Louisell (2001)

Kybernetika

Similarity:

In this paper we give an example of Markus–Yamabe instability in a constant coefficient delay differential equation with time-varying delay. For all values of the range of the delay function, the characteristic function of the associated autonomous delay equation is exponentially stable. Still, the fundamental solution of the time-varying system is unbounded. We also present a modified example having absolutely continuous delay function, easily calculating the average variation of the...

A nonsmooth optimisation approach for the stabilisation of time-delay systems

Joris Vanbiervliet, Koen Verheyden, Wim Michiels, Stefan Vandewalle (2007)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

This paper is concerned with the stabilisation of linear time-delay systems by tuning a finite number of parameters. Such problems typically arise in the design of fixed-order controllers. As time-delay systems exhibit an infinite amount of characteristic roots, a full assignment of the spectrum is impossible. However, if the system is stabilisable for the given parameter set, stability can in principle always be achieved through minimising the real part of the rightmost characteristic...