A Secondary Product Structure in Cohomology Theory.
Anders Kock, Leif Kristensen (1965)
Mathematica Scandinavica
Similarity:
Anders Kock, Leif Kristensen (1965)
Mathematica Scandinavica
Similarity:
D.N. Holtzman (1985)
Mathematica Scandinavica
Similarity:
P.J. Hilton, A. Deleanu (1968)
Mathematica Scandinavica
Similarity:
I. Madsen, A. Kock, L. Kristensen (1967)
Mathematica Scandinavica
Similarity:
I. Madsen, A. Kock, L. Kristensen (1967)
Mathematica Scandinavica
Similarity:
Leif Kristensen (1963)
Mathematica Scandinavica
Similarity:
Leif Kristensen (1965)
Mathematica Scandinavica
Similarity:
Ib Madsen, Leif Kristensen (1967)
Mathematica Scandinavica
Similarity:
Jean-Louis Loday (1995)
Mathematica Scandinavica
Similarity:
Bailey, Toby N., Eastwood, Michael G., Gindikin, Simon G.
Similarity:
Summary: There are two classical languages for analytic cohomology: Dolbeault and Čech. In some applications, however (for example, in describing the Penrose transform and certain representations), it is convenient to use some nontraditional languages. In [, and , J. Geom. Phys. 17, 231-244 (1995; Zbl 0861.22009)] was developed a language that allows one to render analytic cohomology in a purely holomorphic fashion.In this article we indicate a more general construction, which includes...