Displaying similar documents to “An Abelian ergodic theorem”

Pointwise ergodic theorems in Lorentz spaces L(p,q) for null preserving transformations

Ryotaro Sato (1995)

Studia Mathematica

Similarity:

Let (X,ℱ,µ) be a finite measure space and τ a null preserving transformation on (X,ℱ,µ). Functions in Lorentz spaces L(p,q) associated with the measure μ are considered for pointwise ergodic theorems. Necessary and sufficient conditions are given in order that for any f in L(p,q) the ergodic average n - 1 i = 0 n - 1 f τ i ( x ) converges almost everywhere to a function f* in L ( p 1 , q 1 ] , where (pq) and ( p 1 , q 1 ] are assumed to be in the set ( r , s ) : r = s = 1 , o r 1 < r < a n d 1 s , o r r = s = . Results due to C. Ryll-Nardzewski, S. Gładysz, and I. Assani and J. Woś are generalized...

On the sequence of integer parts of a good sequence for the ergodic theorem

Emmanuel Lesigne (1995)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

If ( u n ) is a sequence of real numbers which is good for the ergodic theorem, is the sequence of the integer parts ( [ u n ] ) good for the ergodic theorem ? The answer is negative for the mean ergodic theorem and affirmative for the pointwise ergodic theorem.