Counting and convergence in ergodic theory
Idris Assani, Zoltán Buczolich, Daniel R. Mauldin (2004)
Acta Universitatis Carolinae. Mathematica et Physica
Similarity:
Idris Assani, Zoltán Buczolich, Daniel R. Mauldin (2004)
Acta Universitatis Carolinae. Mathematica et Physica
Similarity:
Ryotaro Sato (1980)
Studia Mathematica
Similarity:
Paweł Głowacki (1981)
Studia Mathematica
Similarity:
Ryotaro Sato (1995)
Studia Mathematica
Similarity:
Let (X,ℱ,µ) be a finite measure space and τ a null preserving transformation on (X,ℱ,µ). Functions in Lorentz spaces L(p,q) associated with the measure μ are considered for pointwise ergodic theorems. Necessary and sufficient conditions are given in order that for any f in L(p,q) the ergodic average converges almost everywhere to a function f* in , where (pq) and are assumed to be in the set . Results due to C. Ryll-Nardzewski, S. Gładysz, and I. Assani and J. Woś are generalized...
Donald S. Ornstein (1975)
Publications mathématiques et informatique de Rennes
Similarity:
Emmanuel Lesigne (1995)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
If is a sequence of real numbers which is good for the ergodic theorem, is the sequence of the integer parts good for the ergodic theorem ? The answer is negative for the mean ergodic theorem and affirmative for the pointwise ergodic theorem.