On Lipschitz numbers
A.S. Besicovitch (1929)
Mathematische Zeitschrift
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A.S. Besicovitch (1929)
Mathematische Zeitschrift
Similarity:
Walter R. Bloom (1988)
Mathematische Zeitschrift
Similarity:
Tong-Seng Quek, Leonard Y.H. Yap (1983)
Mathematische Zeitschrift
Similarity:
J.M. Anderson (1976)
Mathematische Zeitschrift
Similarity:
Thomas M. MacRobert (1961)
Mathematische Zeitschrift
Similarity:
Constantine Georgakis (1972)
Mathematische Zeitschrift
Similarity:
R. Askey, R.P. jr. Boas (1967)
Mathematische Zeitschrift
Similarity:
Roop Narain (1958)
Mathematische Zeitschrift
Similarity:
O.Carruth McGehee (1979)
Mathematische Annalen
Similarity:
R.K.S. Rathore (1975)
Mathematische Zeitschrift
Similarity:
Constantine Georgakis (1973)
Mathematische Zeitschrift
Similarity:
Graham H. Williams (1977)
Mathematische Zeitschrift
Similarity:
Ferenc Móricz (2010)
Studia Mathematica
Similarity:
We consider complex-valued functions f ∈ L¹(ℝ), and prove sufficient conditions in terms of f to ensure that the Fourier transform f̂ belongs to one of the Lipschitz classes Lip(α) and lip(α) for some 0 < α ≤ 1, or to one of the Zygmund classes zyg(α) and zyg(α) for some 0 < α ≤ 2. These sufficient conditions are best possible in the sense that they are also necessary in the case of real-valued functions f for which either xf(x) ≥ 0 or f(x) ≥ 0 almost everywhere.
Louis Pigno, Sadahiro Saeki (1975)
Mathematische Zeitschrift
Similarity:
Ferenc Móricz (2008)
Colloquium Mathematicae
Similarity:
We investigate the order of magnitude of the modulus of continuity of a function f with absolutely convergent Fourier series. We give sufficient conditions in terms of the Fourier coefficients in order that f belong to one of the generalized Lipschitz classes Lip(α,L) and Lip(α,1/L), where 0 ≤ α ≤ 1 and L = L(x) is a positive, nondecreasing, slowly varying function such that L(x) → ∞ as x → ∞. For example, a 2π-periodic function f is said to belong to the class Lip(α,L) if for all...