Displaying similar documents to “Approximately normal function algebras which are local”

Real linear isometries between function algebras. II

Osamu Hatori, Takeshi Miura (2013)

Open Mathematics

Similarity:

We describe the general form of isometries between uniformly closed function algebras on locally compact Hausdorff spaces in a continuation of the study by Miura. We can actually obtain the form on the Shilov boundary, rather than just on the Choquet boundary. We also give an example showing that the form cannot be extended to the whole maximal ideal space.

On BF-algebras

Andrzej Walendziak (2007)

Mathematica Slovaca

Similarity:

On local derivations in the Kadison sense

Andrzej Nowicki (2001)

Colloquium Mathematicae

Similarity:

Let k be a field. We prove that any polynomial ring over k is a Kadison algebra if and only if k is infinite. Moreover, we present some new examples of Kadison algebras and examples of algebras which are not Kadison algebras.

Algebras of quotients with bounded evaluation of a normed semiprime algebra

M. Cabrera, Amir A. Mohammed (2003)

Studia Mathematica

Similarity:

We deal with the algebras consisting of the quotients that produce bounded evaluation on suitable ideals of the multiplication algebra of a normed semiprime algebra A. These algebras of quotients, which contain A, are subalgebras of the bounded algebras of quotients of A, and they have an algebra seminorm for which the relevant inclusions are continuous. We compute these algebras of quotients for some norm ideals on a Hilbert space H: 1) the algebras of quotients with bounded evaluation...