Quotient rings from right ideals
Hentzel, Irvin Roy (1981)
Portugaliae mathematica
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Hentzel, Irvin Roy (1981)
Portugaliae mathematica
Similarity:
H.K. Farahat (1965)
Mathematische Zeitschrift
Similarity:
Kenneth G. Wolfson (1961)
Mathematische Zeitschrift
Similarity:
Joachim Reineke (1977)
Fundamenta Mathematicae
Similarity:
K.R. Goodearl, R.B. Jr. Warfield (1982)
Mathematische Zeitschrift
Similarity:
Jiang Luh (1976)
Fundamenta Mathematicae
Similarity:
Walter Streb (1988)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Carl Faith (1989)
Publicacions Matemàtiques
Similarity:
Zelmanowitz [12] introduced the concept of ring, which we call
Ghanem, Manal, Al-Ezeh, Hassan (2011)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Aburawash, Usama A. (1997)
Mathematica Pannonica
Similarity:
Gary F. Birkenmeier (1990)
Publicacions Matemàtiques
Similarity:
A ring is said to be strongly right bounded if every nonzero right ideal contains a nonzero ideal. In this paper strongly right bounded rings are characterized, conditions are determined which ensure that the split-null (or trivial) extension of a ring is strongly right bounded, and we characterize strongly right bounded right quasi-continuous split-null extensions of a left faithful ideal over a semiprime ring. This last result partially generalizes a result of C. Faith concerning split-null...