Homotopy Inverses for Nerve.
Rudolf Fritsch, Dana May Latch (1981)
Mathematische Zeitschrift
Similarity:
Rudolf Fritsch, Dana May Latch (1981)
Mathematische Zeitschrift
Similarity:
Fritsch, Rudolf, Golasiński, Marek (1998)
Theory and Applications of Categories [electronic only]
Similarity:
S.H. Nienhuys-Cheng (1971)
Mathematische Zeitschrift
Similarity:
Dan Burghelea, Aristide Deleanu (1968/69)
Mathematische Zeitschrift
Similarity:
Timothy Porter (1976)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Takahisa Miyata (2007)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
The category Top of topological spaces and continuous maps has the structures of a fibration category and a cofibration category in the sense of Baues, where fibration = Hurewicz fibration, cofibration = the usual cofibration, and weak equivalence = homotopy equivalence. Concentrating on fibrations, we consider the problem: given a full subcategory 𝓒 of Top, is the fibration structure of Top restricted to 𝓒 a fibration category? In this paper we take the special case where 𝓒 is the...
Friedrich W. Bauer (1978)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Thomason, R.W. (1995)
Theory and Applications of Categories [electronic only]
Similarity:
Marek Golasiński (1987)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
S. Balcerzyk, Phan Chan, R. Kiełpiński (1976)
Fundamenta Mathematicae
Similarity:
Mikhail A. Batanin (1997)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity: