### Groups of Exponent 4 as Automorphism Groups.

Kurt A. Hirsch, J.T. Hallett (1970)

Mathematische Zeitschrift

Similarity:

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

Kurt A. Hirsch, J.T. Hallett (1970)

Mathematische Zeitschrift

Similarity:

Kurt A. Hirsch, J. Terry Hallett (1977)

Mathematische Zeitschrift

Similarity:

J. Terry Tallett, Hirsch Kurt A. (1973)

Mathematische Zeitschrift

Similarity:

Terence M. Gagen (1965)

Mathematische Zeitschrift

Similarity:

B. A. F. Wehrfritz (2015)

Colloquium Mathematicae

Similarity:

If X is a property or a class of groups, an automorphism ϕ of a group G is X-finitary if there is a normal subgroup N of G centralized by ϕ such that G/N is an X-group. Groups of such automorphisms for G a module over some ring have been very extensively studied over many years. However, for groups in general almost nothing seems to have been done. In 2009 V. V. Belyaev and D. A. Shved considered the general case for X the class of finite groups. Here we look further at the finite case...

R.E. Greene, Krantz, S.G. (1985)

Mathematische Zeitschrift

Similarity:

Paul Hill, Charles Megibben (1985)

Mathematische Zeitschrift

Similarity:

Boya, Luis J. (2011)

SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]

Similarity:

S. Lajos (1964)

Matematički Vesnik

Similarity:

N. I. Kryuchkov (2012)

Rendiconti del Seminario Matematico della Università di Padova

Similarity:

Yablan, Slavik (1986)

Publications de l'Institut Mathématique. Nouvelle Série

Similarity:

Colin C. Graham (1977)

Colloquium Mathematicae

Similarity:

George Glaubermann (1964)

Mathematische Zeitschrift

Similarity:

Murray Schacher, Gary M. Seitz (1972)

Mathematische Zeitschrift

Similarity:

Larry Dornhoff (1967)

Mathematische Zeitschrift

Similarity: