Intersections in Projective Space I: Combinatorics.
A.A. Bruen, J.W.P. Hirschfeld (1986)
Mathematische Zeitschrift
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A.A. Bruen, J.W.P. Hirschfeld (1986)
Mathematische Zeitschrift
Similarity:
Mathias Peternell (1987)
Mathematische Zeitschrift
Similarity:
Ascher Wagner (1969)
Mathematische Zeitschrift
Similarity:
Ascher Wagner (1969)
Mathematische Zeitschrift
Similarity:
Ascher Wagner (1971)
Mathematische Zeitschrift
Similarity:
Roy Dyckhoff (1972)
Mathematische Zeitschrift
Similarity:
R.J. Clarke (1973)
Mathematische Zeitschrift
Similarity:
Roland Coghetto (2016)
Formalized Mathematics
Similarity:
The real projective plane has been formalized in Isabelle/HOL by Timothy Makarios [13] and in Coq by Nicolas Magaud, Julien Narboux and Pascal Schreck [12]. Some definitions on the real projective spaces were introduced early in the Mizar Mathematical Library by Wojciech Leonczuk [9], Krzysztof Prazmowski [10] and by Wojciech Skaba [18]. In this article, we check with the Mizar system [4], some properties on the determinants and the Grassmann-Plücker relation in rank 3 [2], [1], [7],...
Boskoff, Wladimir G., Suceavă, Bogdan D. (2008)
Beiträge zur Algebra und Geometrie
Similarity:
Gallo, Daniel M. (1997)
Annales Academiae Scientiarum Fennicae. Mathematica
Similarity:
Keppens, Dirk, Van Maldeghem, Hendrik (2009)
Beiträge zur Algebra und Geometrie
Similarity:
A. Wagner (1961)
Mathematische Zeitschrift
Similarity:
Marek Kordos (1989)
Colloquium Mathematicae
Similarity:
Roland Coghetto (2017)
Formalized Mathematics
Similarity:
In this article we check, with the Mizar system [2], Pascal’s theorem in the real projective plane (in projective geometry Pascal’s theorem is also known as the Hexagrammum Mysticum Theorem)1. Pappus’ theorem is a special case of a degenerate conic of two lines. For proving Pascal’s theorem, we use the techniques developed in the section “Projective Proofs of Pappus’ Theorem” in the chapter “Pappus’ Theorem: Nine proofs and three variations” [11]. We also follow some ideas from Harrison’s...