The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Measurable Refinement Monoids and Applications to Distributive Semilattices, Heyting Algebras, and Stone Spaces.”

Weak Boolean products of bounded dually residuated l -monoids

Jan Kühr, Jiří Rachůnek (2007)

Mathematica Bohemica

Similarity:

In the paper we deal with weak Boolean products of bounded dually residuated -monoids (DR l -monoids). Since bounded DRl-monoids are a generalization of pseudo MV-algebras and pseudo BL-algebras, the results can be immediately applied to these algebras.

Direct decompositions of dually residuated lattice-ordered monoids

Jiří Rachůnek, Dana Šalounová (2004)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

The class of dually residuated lattice ordered monoids (DRl-monoids) contains, in an appropriate signature, all l-groups, Brouwerian algebras, MV- and GMV-algebras, BL- and pseudo BL-algebras, etc. In the paper we study direct products and decompositions of DRl-monoids in general and we characterize ideals of DRl-monoids which are direct factors. The results are then applicable to all above mentioned special classes of DRl-monoids.

A duality between algebras of basic logic and bounded representable D R l -monoids

Jiří Rachůnek (2001)

Mathematica Bohemica

Similarity:

B L -algebras, introduced by P. Hájek, form an algebraic counterpart of the basic fuzzy logic. In the paper it is shown that B L -algebras are the duals of bounded representable D R l -monoids. This duality enables us to describe some structure properties of B L -algebras.