Degree of Best Approximation by Trigonometric Blending Functions.
W. Haußmann, K. Jetter, B. Steinhaus (1985)
Mathematische Zeitschrift
Similarity:
W. Haußmann, K. Jetter, B. Steinhaus (1985)
Mathematische Zeitschrift
Similarity:
Vugar E. Ismailov (2007)
Studia Mathematica
Similarity:
The approximation in the uniform norm of a continuous function f(x) = f(x₁,...,xₙ) by continuous sums g₁(h₁(x)) + g₂(h₂(x)), where the functions h₁ and h₂ are fixed, is considered. A Chebyshev type criterion for best approximation is established in terms of paths with respect to the functions h₁ and h₂.
Géza Freud (1962)
Mathematische Zeitschrift
Similarity:
Tulsi Dass Narang (1986)
Archivum Mathematicum
Similarity:
Jens Fromm (1976)
Mathematische Zeitschrift
Similarity:
Hartmut Ehlich, Werner Haussmann (1970)
Mathematische Zeitschrift
Similarity:
P., Heuser (1939)
Mathematische Zeitschrift
Similarity:
A.G. O'Farrell, P.J. de Paepe (1993)
Mathematische Zeitschrift
Similarity:
Itshak Borosh, C.K. Chui, P.W. Smith (1977)
Mathematische Zeitschrift
Similarity:
P.J. de Paepe (1993)
Mathematische Zeitschrift
Similarity:
Sýkorová, Irena
Similarity:
Several years ago, we discussed the problem of approximation polynomials with Milan Práger. This paper is a natural continuation of the work we collaborated on. An important part of numerical analysis is the problem of finding an approximation of a given function. This problem can be solved in many ways. The aim of this paper is to show how interpolation can be combined with the Chebyshev approximation.