Displaying similar documents to “Iterations of translative integral formulae and non-isotropic Poisson processes of particles.”

Asymptotic evaluation of the Poisson measures for tubes around jump curves

Xavier Bardina, Carles Rovira, Samy Tindel (2002)

Applicationes Mathematicae

Similarity:

We find the asymptotic behavior of P(||X-ϕ|| ≤ ε) when X is the solution of a linear stochastic differential equation driven by a Poisson process and ϕ the solution of a linear differential equation driven by a pure jump function.

Quantization of pencils with a gl-type Poisson center and braided geometry

Dimitri Gurevich, Pavel Saponov (2011)

Banach Center Publications

Similarity:

We consider Poisson pencils, each generated by a linear Poisson-Lie bracket and a quadratic Poisson bracket corresponding to a so-called Reflection Equation Algebra. We show that any bracket from such a Poisson pencil (and consequently, the whole pencil) can be restricted to any generic leaf of the Poisson-Lie bracket. We realize a quantization of these Poisson pencils (restricted or not) in the framework of braided affine geometry. Also, we introduce super-analogs of all these Poisson...

Poisson-Fermi Formulation of Nonlocal Electrostatics in Electrolyte Solutions

Jinn-Liang Liu, Dexuan Xie, Bob Eisenberg (2017)

Molecular Based Mathematical Biology

Similarity:

We present a nonlocal electrostatic formulation of nonuniform ions and water molecules with interstitial voids that uses a Fermi-like distribution to account for steric and correlation efects in electrolyte solutions. The formulation is based on the volume exclusion of hard spheres leading to a steric potential and Maxwell’s displacement field with Yukawa-type interactions resulting in a nonlocal electric potential. The classical Poisson-Boltzmann model fails to describe steric and correlation...

Stationary solutions of the generalized Smoluchowski-Poisson equation

Robert Stańczy (2008)

Banach Center Publications

Similarity:

The existence of steady states in the microcanonical case for a system describing the interaction of gravitationally attracting particles with a self-similar pressure term is proved. The system generalizes the Smoluchowski-Poisson equation. The presented theory covers the case of the model with diffusion that obeys the Fermi-Dirac statistic.