On the surjectivity of Galois representations attached to elliptic curves over number fields
Álvaro Lozano-Robledo (2005)
Acta Arithmetica
Similarity:
Álvaro Lozano-Robledo (2005)
Acta Arithmetica
Similarity:
Annette Klute (1997)
Manuscripta mathematica
Similarity:
Tom Fisher (2015)
Acta Arithmetica
Similarity:
We compute equations for the families of elliptic curves 9-congruent to a given elliptic curve. We use these to find infinitely many non-trivial pairs of 9-congruent elliptic curves over ℚ, i.e. pairs of non-isogenous elliptic curves over ℚ whose 9-torsion subgroups are isomorphic as Galois modules.
Y. Ihara (1986)
Inventiones mathematicae
Similarity:
Makoto Matsumoto (1996)
Journal für die reine und angewandte Mathematik
Similarity:
Cassou-Noguès, Philippe, Jehanne, Arnaud (1996)
Experimental Mathematics
Similarity:
Peder Frederiksen, Ian Kiming (2004)
Acta Arithmetica
Similarity:
Adam Logan (2002)
Acta Arithmetica
Similarity:
Nils Bruin, Julio Fernández, Josep González, Joan-C. Lario (2007)
Acta Arithmetica
Similarity:
Robert C. Valentini (1986)
Mathematische Zeitschrift
Similarity:
Anupam Srivastav, Martin J. Taylor (1990)
Inventiones mathematicae
Similarity:
Michael A. Bennett, Imin Chen, Sander R. Dahmen, Soroosh Yazdani (2014)
Acta Arithmetica
Similarity:
We study coprime integer solutions to the equation a³ + b³ⁿ = c² using Galois representations and modular forms. This case represents perhaps the last natural family of generalized Fermat equations descended from spherical cases which is amenable to resolution using the so-called modular method. Our techniques involve an elaborate combination of ingredients, ranging from ℚ-curves and a delicate multi-Frey approach, to appeal to intricate image of inertia arguments.
David E. Rohrlich (2010)
Acta Arithmetica
Similarity:
Nigel Boston (1991)
Inventiones mathematicae
Similarity:
D. Burns (1995)
Mathematische Zeitschrift
Similarity:
Chandrashekhar Khare (1998)
Manuscripta mathematica
Similarity: