The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Asymptotic expansions of the mean values of Dirichlet L-functions.”

Complete asymptotic expansions for eigenvalues of Dirichlet laplacian in thin three-dimensional rods

Denis Borisov, Giuseppe Cardone (2011)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We consider the Dirichlet Laplacian in a thin curved three-dimensional rod. The rod is finite. Its cross-section is constant and small, and rotates along the reference curve in an arbitrary way. We find a two-parametric set of the eigenvalues of such operator and construct their complete asymptotic expansions. We show that this two-parametric set contains any prescribed number of the first eigenvalues of the considered operator. We obtain the complete asymptotic expansions for the eigenfunctions...

On various mean values of Dirichlet L-functions

Takuya Okamoto, Tomokazu Onozuka (2015)

Acta Arithmetica

Similarity:

We give a method of obtaining explicit formulas for various mean values of Dirichlet L-functions which are expressed in terms of the Riemann zeta-function, the Euler function and Jordan's totient functions. Applying those results to mean values of Dirichlet L-functions, we also give an explicit formula for certain mean values of double Dirichlet L-functions.