A Priori Estimates and a Liouvielle Theorem for Complex Monge-Ampère Equations.
Dieter Riebesehl, Friedmar Schulz (1984)
Mathematische Zeitschrift
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Dieter Riebesehl, Friedmar Schulz (1984)
Mathematische Zeitschrift
Similarity:
Friedmar Schulz (1983)
Mathematische Annalen
Similarity:
Ralf Beyerstedt (1991)
Mathematische Zeitschrift
Similarity:
John I.E. Urbas (1988)
Mathematische Zeitschrift
Similarity:
Kushner, Alexei (2006)
Lobachevskii Journal of Mathematics
Similarity:
Urban Cegrell (1986)
Mathematische Zeitschrift
Similarity:
Kantorovich, L.V. (2004)
Journal of Mathematical Sciences (New York)
Similarity:
Rafał Czyż, Lisa Hed (2008)
Annales Polonici Mathematici
Similarity:
We prove that subextension of certain plurisubharmonic functions is always possible without increasing the total Monge-Ampère mass.
Laszló Lempert (1983)
Mathematische Annalen
Similarity:
Urban Cegrell (1984)
Mathematische Zeitschrift
Similarity:
Machida, Y., Morimoto, T. (1999)
Lobachevskii Journal of Mathematics
Similarity:
Szymon Pliś (2005)
Annales Polonici Mathematici
Similarity:
We modify an example due to X.-J. Wang and obtain some counterexamples to the regularity of the degenerate complex Monge-Ampère equation on a ball in ℂⁿ and on the projective space ℙⁿ.
Pham Hoang Hiep (2005)
Annales Polonici Mathematici
Similarity:
We give a characterization for boundedness of plurisubharmonic functions in the Cegrell class ℱ.
Jonas Wiklund (2004)
Annales Polonici Mathematici
Similarity:
We study two known theorems regarding Hermitian matrices: Bellman's principle and Hadamard's theorem. Then we apply them to problems for the complex Monge-Ampère operator. We use Bellman's principle and the theory for plurisubharmonic functions of finite energy to prove a version of subadditivity for the complex Monge-Ampère operator. Then we show how Hadamard's theorem can be extended to polyradial plurisubharmonic functions.