Faltings modular height and self-intersection of dualizing sheaf.
Atsushi Moriwaki (1995)
Mathematische Zeitschrift
Similarity:
Atsushi Moriwaki (1995)
Mathematische Zeitschrift
Similarity:
D. Choi (2006)
Acta Arithmetica
Similarity:
Sung-Geun Lim (2010)
Acta Arithmetica
Similarity:
Besser, Amnon (1997)
Documenta Mathematica
Similarity:
Wissam Raji (2007)
Acta Arithmetica
Similarity:
(2013)
Acta Arithmetica
Similarity:
The classical modular equations involve bivariate polynomials that can be seen to be univariate in the modular invariant j with integer coefficients. Kiepert found modular equations relating some η-quotients and the Weber functions γ₂ and γ₃. In the present work, we extend this idea to double η-quotients and characterize all the parameters leading to this kind of equation. We give some properties of these equations, explain how to compute them and give numerical examples.
Serge Lang, Daniel S. Kubert (1978)
Mathematische Annalen
Similarity:
Hidegoro Nakano (1968)
Studia Mathematica
Similarity:
Heima Hayashi (2006)
Acta Arithmetica
Similarity:
Jun-Ichi Igusa (1967)
Mathematische Annalen
Similarity:
Roelof W. Bruggeman (1986)
Mathematische Zeitschrift
Similarity:
Ryszard Urbanski (1986)
Mathematische Zeitschrift
Similarity:
John Roderick Smart (1966)
Mathematische Zeitschrift
Similarity:
Sunder Sal (1965)
Mathematische Zeitschrift
Similarity:
Karen Taylor (2012)
Acta Arithmetica
Similarity: