Cohomology of unipotent algebraic and finite groups and the Steenrod algebra.
Michishige Tezuka (1994)
Mathematische Zeitschrift
Similarity:
Michishige Tezuka (1994)
Mathematische Zeitschrift
Similarity:
M. Kaneda, N. Shimada, M. Tezuka (1990)
Mathematische Zeitschrift
Similarity:
Robert Heaton (1962)
Mathematische Zeitschrift
Similarity:
W. Kucharz (2005)
Annales Polonici Mathematici
Similarity:
A Nash cohomology class on a compact Nash manifold is a mod 2 cohomology class whose Poincaré dual homology class can be represented by a Nash subset. We find a canonical way to define Nash cohomology classes on an arbitrary compact smooth manifold M. Then the Nash cohomology ring of M is compared to the ring of algebraic cohomology classes on algebraic models of M. This is related to three conjectures concerning algebraic cohomology classes.
E.M. Friedlander, B.J. Parshall (1983)
Inventiones mathematicae
Similarity:
Frank Raymond (1961)
Mathematische Zeitschrift
Similarity:
Rodney Y. Sharp (1977)
Mathematische Zeitschrift
Similarity:
Ken-ichi Tahara (1972)
Mathematische Zeitschrift
Similarity:
Jon F. Carlson (1995)
Mathematische Zeitschrift
Similarity:
Ellis, Graham, Kholodna, Irina (1999)
Homology, Homotopy and Applications
Similarity:
Takeo Ohsawa (1992)
Mathematische Zeitschrift
Similarity:
Roger Gómez-Ortells (2014)
Colloquium Mathematicae
Similarity:
We show that the second group of cohomology with compact supports is nontrivial for three-dimensional systolic pseudomanifolds. It follows that groups acting geometrically on such spaces are not Poincaré duality groups.
Soogil Seo (2005)
Acta Arithmetica
Similarity:
Roy Joshua (1987)
Mathematische Zeitschrift
Similarity: