Rationality of Moduli spaces of torsion free sheaves over rational surfaces.
Lothar Göttsche (1996)
Manuscripta mathematica
Similarity:
Lothar Göttsche (1996)
Manuscripta mathematica
Similarity:
Rizov, Jordan (2006)
Serdica Mathematical Journal
Similarity:
2000 Mathematics Subject Classification: 14J28, 14D22. In this note we define moduli stacks of (primitively) polarized K3 spaces. We show that they are representable by Deligne-Mumford stacks over Spec(Z). Further, we look at K3 spaces with a level structure. Our main result is that the moduli functors of K3 spaces with a primitive polarization of degree 2d and a level structure are representable by smooth algebraic spaces over open parts of Spec(Z). To do this we use ideas...
Christian Okonek (1983)
Mathematische Zeitschrift
Similarity:
Charles H. Walter (1995)
Mathematische Annalen
Similarity:
Shigeyuki Kondo (1988)
Inventiones mathematicae
Similarity:
Marcin Hauzer (2010)
Annales Polonici Mathematici
Similarity:
We describe some one-dimensional moduli spaces of rank 2 Gieseker semistable sheaves on an Enriques surface improving earlier results of H. Kim. In the case of a nodal Enriques surface the moduli spaces obtained are reducible for general polarizations. For unnodal Enriques surfaces we show how to reduce the study of moduli spaces of high even rank Gieseker semistable sheaves to low ranks. To prove this we use the method of K. Yoshioka who showed that in the odd rank case, one can reduce...
R. Kusner, R. Mazzeo, D. Pollack (1996)
Geometric and functional analysis
Similarity:
Bruzzo, Ugo, Markushevish, Dimitri (2011)
Documenta Mathematica
Similarity:
Krzysztof Dabrowski (1982)
Mathematische Annalen
Similarity:
Zhenbo Qin (1993)
Manuscripta mathematica
Similarity:
Miles Reid (1987)
Mathematische Annalen
Similarity:
Rick Miranda (1981)
Mathematische Annalen
Similarity:
Jun Li (1994)
Inventiones mathematicae
Similarity:
D. Gieseker (1977)
Inventiones mathematicae
Similarity:
Curtis McMullen (2013)
Journal of the European Mathematical Society
Similarity:
We discuss a common framework for studying twists of Riemann surfaces coming from earthquakes, Teichmüller theory and Schiffer variations, and use it to analyze geodesics in the moduli space of isoperiodic 1-forms.
G. Trautmann, Rosa María Miró-Roig (1994)
Mathematische Zeitschrift
Similarity: