Displaying similar documents to “Classes of graphs definable by graph algebra identities or quasi-identities”

Universality for and in Induced-Hereditary Graph Properties

Izak Broere, Johannes Heidema (2013)

Discussiones Mathematicae Graph Theory

Similarity:

The well-known Rado graph R is universal in the set of all countable graphs I, since every countable graph is an induced subgraph of R. We study universality in I and, using R, show the existence of 2 א0 pairwise non-isomorphic graphs which are universal in I and denumerably many other universal graphs in I with prescribed attributes. Then we contrast universality for and universality in induced-hereditary properties of graphs and show that the overwhelming majority of induced-hereditary...

On universal graphs for hom-properties

Peter Mihók, Jozef Miškuf, Gabriel Semanišin (2009)

Discussiones Mathematicae Graph Theory

Similarity:

A graph property is any isomorphism closed class of simple graphs. For a simple finite graph H, let → H denote the class of all simple countable graphs that admit homomorphisms to H, such classes of graphs are called hom-properties. Given a graph property 𝓟, a graph G ∈ 𝓟 is universal in 𝓟 if each member of 𝓟 is isomorphic to an induced subgraph of G. In particular, we consider universal graphs in → H and we give a new proof of the existence of a universal graph in → H, for any finite...

The periphery graph of a median graph

Boštjan Brešar, Manoj Changat, Ajitha R. Subhamathi, Aleksandra Tepeh (2010)

Discussiones Mathematicae Graph Theory

Similarity:

The periphery graph of a median graph is the intersection graph of its peripheral subgraphs. We show that every graph without a universal vertex can be realized as the periphery graph of a median graph. We characterize those median graphs whose periphery graph is the join of two graphs and show that they are precisely Cartesian products of median graphs. Path-like median graphs are introduced as the graphs whose periphery graph has independence number 2, and it is proved that there are...