Gaps Between Consecutive Zeros of the Riemann Zeta-Function on the Critical Line.
A. Ivic, M. Jutila (1988)
Monatshefte für Mathematik
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A. Ivic, M. Jutila (1988)
Monatshefte für Mathematik
Similarity:
Yuk-Kam Lau (1994)
Monatshefte für Mathematik
Similarity:
J.B. Conrey (1989)
Journal für die reine und angewandte Mathematik
Similarity:
H. M. Bui, Brian Conrey, Matthew P. Young (2011)
Acta Arithmetica
Similarity:
Timothy Trudgian (2011)
Acta Arithmetica
Similarity:
K.M. Bartz (1990)
Monatshefte für Mathematik
Similarity:
D.R. Heath-Brown (1993)
Mathematische Zeitschrift
Similarity:
Krystyna Maria Bartz (1992)
Monatshefte für Mathematik
Similarity:
Johannes Schoißengeier (1979)
Monatshefte für Mathematik
Similarity:
G.H., and J.E. Littlewood Hardy (1921)
Mathematische Zeitschrift
Similarity:
Jürgen, Lodemann, Martin Hinz (1994)
Monatshefte für Mathematik
Similarity:
Aleksandar Ivic, K. Matsumoto (1996)
Monatshefte für Mathematik
Similarity:
H. M. Bui (2014)
Acta Arithmetica
Similarity:
Assuming the Riemann Hypothesis we show that there exist infinitely many consecutive zeros of the Riemann zeta-function whose gaps are greater than 2.9 times the average spacing.