Displaying similar documents to “Radial Functions and Regularity of Solutions to the Schrödinger Equation.”

Dispersion Phenomena in Dunkl-Schrödinger Equation and Applications

Mejjaoli, H. (2009)

Serdica Mathematical Journal

Similarity:

2000 Mathematics Subject Classification: 35Q55,42B10. In this paper, we study the Schrödinger equation associated with the Dunkl operators, we study the dispersive phenomena and we prove the Strichartz estimates for this equation. Some applications are discussed.

Weak Asymptotics for Schrödinger Evolution

S. A. Denisov (2010)

Mathematical Modelling of Natural Phenomena

Similarity:

In this short note, we apply the technique developed in [Math. Model. Nat. Phenom., 5 (2010), No. 4, 122-149] to study the long-time evolution for Schrödinger equation with slowly decaying potential.

Stationary solutions of semilinear Schrödinger equations with trapping potentials in supercritical dimensions

Filip Ficek (2023)

Archivum Mathematicum

Similarity:

Nonlinear Schrödinger equations are usually investigated with the use of the variational methods that are limited to energy-subcritical dimensions. Here we present the approach based on the shooting method that can give the proof of existence of the ground states in critical and supercritical cases. We formulate the assumptions on the system that are sufficient for this method to work. As examples, we consider Schrödinger-Newton and Gross-Pitaevskii equations with harmonic potentials. ...