Some Equivalence Theorems in Affine Hypersurface Theory.
Barbara Opozda (1992)
Monatshefte für Mathematik
Similarity:
Barbara Opozda (1992)
Monatshefte für Mathematik
Similarity:
Stefan Ivanov (1997)
Monatshefte für Mathematik
Similarity:
F. Dillen, K. Nomizu, L. Vranken (1990)
Monatshefte für Mathematik
Similarity:
R. Niebergall, P.J. Ryan (1994)
Mathematische Zeitschrift
Similarity:
Jérôme Buzzi (1997)
Monatshefte für Mathematik
Similarity:
Masami Sekizawa (1988)
Monatshefte für Mathematik
Similarity:
Luc Vrancken (1988)
Annales de la Faculté des sciences de Toulouse : Mathématiques
Similarity:
Luc Vrancken (1996)
Monatshefte für Mathematik
Similarity:
Józef Joachim Telega (1977)
Annales Polonici Mathematici
Similarity:
L. Márki, K. Kaarli, E.T. Schmidt (1985)
Monatshefte für Mathematik
Similarity:
Janko Marovt (2006)
Studia Mathematica
Similarity:
Let 𝒳 be a compact Hausdorff space which satisfies the first axiom of countability, I = [0,1] and 𝓒(𝒳,I) the set of all continuous functions from 𝒳 to I. If φ: 𝓒(𝒳,I) → 𝓒(𝒳,I) is a bijective affine map then there exists a homeomorphism μ: 𝒳 → 𝒳 such that for every component C in 𝒳 we have either φ(f)(x) = f(μ(x)), f ∈ 𝓒(𝒳,I), x ∈ C, or φ(f)(x) = 1-f(μ(x)), f ∈ 𝓒(𝒳,I), x ∈ C.
Paweł Urbański (2003)
Banach Center Publications
Similarity:
An affine Cartan calculus is developed. The concepts of special affine bundles and special affine duality are introduced. The canonical isomorphisms, fundamental for Lagrangian and Hamiltonian formulations of the dynamics in the affine setting are proved.
Cruceanu, Vasile (2005)
Balkan Journal of Geometry and its Applications (BJGA)
Similarity:
S. Węgrzynowski
Similarity:
CONTENTSIntroduction............................................................................................................ 5§ 1. Tangentially regular s-structure................................................................. 5§ 2. The description of a method of classification.................................................. 10§ 3. Two-dimensional symmetric spaces............................................................... 11§ 4. Three-dimensional generalized affine symmetric...