Any equivalence relation over a category is a simplicial
C. Ruiz Salguero, R. Ruiz (1976)
Revista colombiana de matematicas
Similarity:
C. Ruiz Salguero, R. Ruiz (1976)
Revista colombiana de matematicas
Similarity:
F.William Lawvere (1986)
Revista colombiana de matematicas
Similarity:
Ieke Moerdijk, Reyes Gonzalo E. (1986)
Revista colombiana de matematicas
Similarity:
Carlos Ruiz Salguero, Roberto Ruis S. (1981)
Revista colombiana de matematicas
Similarity:
F.William Lawvere (1986)
Revista colombiana de matematicas
Similarity:
Solomon Feferman (1985)
Revista colombiana de matematicas
Similarity:
C. Ruiz Salguero, Roberto Ruiz S. (1978)
Revista colombiana de matematicas
Similarity:
Jan Spaliński (2003)
Fundamenta Mathematicae
Similarity:
The fourth axiom of a model category states that given a commutative square of maps, say i: A → B, g: B → Y, f: A → X, and p: X → Y such that gi = pf, if i is a cofibration, p a fibration and either i or p is a weak equivalence, then a lifting (i.e. a map h: B → X such that ph = g and hi = f) exists. We show that for many model categories the two conditions that either i or p above is a weak equivalence can be embedded in an infinite number of conditions which imply the existence of...
Jan Mycielski (1985)
Revista colombiana de matematicas
Similarity:
Ives Lequin (1974)
Revista colombiana de matematicas
Similarity:
C. Ruiz Salguero, R. Ruiz, S. Frias (1972)
Revista colombiana de matematicas
Similarity:
Nelo Allan (1970)
Revista colombiana de matematicas
Similarity:
Ali Ahmad Fora (1984)
Revista colombiana de matematicas
Similarity:
G. Victor Albis (1968)
Revista colombiana de matematicas
Similarity: