Absolutely P-Summing, P-Nuclear Operators and Their Conjugates.
Joel S. Cohen (1973)
Mathematische Annalen
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Joel S. Cohen (1973)
Mathematische Annalen
Similarity:
Alexia B. Latimer, William H. Ruckle (1974)
Mathematische Annalen
Similarity:
Kamil John (1990)
Mathematische Annalen
Similarity:
Andreas Benndorf (1982)
Mathematische Annalen
Similarity:
J.R. HOLUB (1971)
Mathematische Annalen
Similarity:
Thomas Kühn (1983)
Mathematische Annalen
Similarity:
T. TERZIOGLU (1971)
Mathematische Annalen
Similarity:
Erhard Behrends, Susanne Dierolf, Peter Harmand (1986)
Mathematische Annalen
Similarity:
Kamil John (1981)
Mathematische Annalen
Similarity:
Wend Werner (1988)
Mathematische Annalen
Similarity:
J. M. Delgado, C. Piñeiro, E. Serrano (2010)
Studia Mathematica
Similarity:
For p ≥ 1, a set K in a Banach space X is said to be relatively p-compact if there exists a p-summable sequence (xₙ) in X with . We prove that an operator T: X → Y is p-compact (i.e., T maps bounded sets to relatively p-compact sets) iff T* is quasi p-nuclear. Further, we characterize p-summing operators as those operators whose adjoints map relatively compact sets to relatively p-compact sets.
Andrew John Sommese (1975)
Mathematische Annalen
Similarity:
Kamil John (1989)
Commentationes Mathematicae Universitatis Carolinae
Similarity: