Absolutely P-Summing, P-Nuclear Operators and Their Conjugates.
Joel S. Cohen (1973)
Mathematische Annalen
Similarity:
Joel S. Cohen (1973)
Mathematische Annalen
Similarity:
Alexia B. Latimer, William H. Ruckle (1974)
Mathematische Annalen
Similarity:
Kamil John (1990)
Mathematische Annalen
Similarity:
Andreas Benndorf (1982)
Mathematische Annalen
Similarity:
J.R. HOLUB (1971)
Mathematische Annalen
Similarity:
Thomas Kühn (1983)
Mathematische Annalen
Similarity:
T. TERZIOGLU (1971)
Mathematische Annalen
Similarity:
Erhard Behrends, Susanne Dierolf, Peter Harmand (1986)
Mathematische Annalen
Similarity:
Kamil John (1981)
Mathematische Annalen
Similarity:
Wend Werner (1988)
Mathematische Annalen
Similarity:
J. M. Delgado, C. Piñeiro, E. Serrano (2010)
Studia Mathematica
Similarity:
For p ≥ 1, a set K in a Banach space X is said to be relatively p-compact if there exists a p-summable sequence (xₙ) in X with . We prove that an operator T: X → Y is p-compact (i.e., T maps bounded sets to relatively p-compact sets) iff T* is quasi p-nuclear. Further, we characterize p-summing operators as those operators whose adjoints map relatively compact sets to relatively p-compact sets.
Andrew John Sommese (1975)
Mathematische Annalen
Similarity:
Kamil John (1989)
Commentationes Mathematicae Universitatis Carolinae
Similarity: