Homology Equivalences and a Technique of Ganea.
Graham Hilton Toomer (1976)
Mathematische Zeitschrift
Similarity:
Graham Hilton Toomer (1976)
Mathematische Zeitschrift
Similarity:
F.R. Cohen, L.R. Taylor (1988)
Mathematische Zeitschrift
Similarity:
S. K. Kaul (1970)
Colloquium Mathematicae
Similarity:
Urs Stammbach (1972)
Mathematische Zeitschrift
Similarity:
Z. Fiedorowicz, T. Pirashvili (1995)
Mathematische Annalen
Similarity:
Brooke E. Shipley (1995)
Mathematische Zeitschrift
Similarity:
Takuma Imamura (2021)
Archivum Mathematicum
Similarity:
In this paper, we clarify the relationship among the Vietoris-type homology theories and the microsimplicial homology theories, where the latter are nonstandard homology theories defined by M.C. McCord (for topological spaces), T. Korppi (for completely regular topological spaces) and the author (for uniform spaces). We show that McCord’s and our homology are isomorphic for all compact uniform spaces and that Korppi’s and our homology are isomorphic for all fine uniform spaces. Our homology...
Bruns, Winfried, Vetter, Udo (1998)
Beiträge zur Algebra und Geometrie
Similarity:
Marian Mrozek, Bogdan Batko (2010)
Annales Polonici Mathematici
Similarity:
We generalize the notion of cubical homology to the class of locally compact representable sets in order to propose a new convenient method of reducing the complexity of a set while computing its homology.
A. Blanco, J. Majadas, A.G. Rodicio (1996)
Inventiones mathematicae
Similarity:
Victor Snaith (1983)
Mathematische Zeitschrift
Similarity:
Yu. T. Lisitsa, S. Mardešić (1986)
Banach Center Publications
Similarity:
S. Dragotti, G. Magro, L. Parlato (2006)
Bollettino dell'Unione Matematica Italiana
Similarity:
We give, here, a geometric treatment of intersection homology theory.
Daniel Krasner (2009)
Fundamenta Mathematicae
Similarity:
We investigate the Khovanov-Rozansky invariant of a certain tangle and its compositions. Surprisingly the complexes we encounter reduce to ones that are very simple. Furthermore, we discuss a "local" algorithm for computing Khovanov-Rozansky homology and compare our results with those for the "foam" version of sl₃-homology.
Ulrich Oberst (1968)
Mathematische Zeitschrift
Similarity: