Extremal structure of convex sets. II
V.L. Klee jr. (1958)
Mathematische Zeitschrift
Similarity:
V.L. Klee jr. (1958)
Mathematische Zeitschrift
Similarity:
S. Walczak (1971)
Annales Polonici Mathematici
Similarity:
Seldon Y. Trimble (1969)
Mathematische Zeitschrift
Similarity:
P. Ganapathi (1934)
Mathematische Zeitschrift
Similarity:
Jaroslaw A. Wisniewski (1988/89)
Mathematische Zeitschrift
Similarity:
H. Groemer (1983)
Monatshefte für Mathematik
Similarity:
Burglind Jöricke (1995)
Mathematische Zeitschrift
Similarity:
Siegfried Helbig (1988)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
Thomas Bloom, Jean-Paul Calvi (1998)
Annales de l'institut Fourier
Similarity:
We show that a convex totally real compact set in admits an extremal array for Kergin interpolation if and only if it is a totally real ellipse. (An array is said to be extremal for when the corresponding sequence of Kergin interpolation polynomials converges uniformly (on ) to the interpolated function as soon as it is holomorphic on a neighborhood of .). Extremal arrays on these ellipses are characterized in terms of the distribution of the points and the rate of convergence...