The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Product preserving functors of infinite-dimensional manifolds”

Properties of product preserving functors

Gancarzewicz, Jacek, Mikulski, Włodzimierz, Pogoda, Zdzisław

Similarity:

A product preserving functor is a covariant functor from the category of all manifolds and smooth mappings into the category of fibered manifolds satisfying a list of axioms the main of which is product preserving: ( M 1 × M 2 ) = ( M 1 ) × ( M 2 ) . It is known that any product preserving functor is equivalent to a Weil functor T A . Here T A ( M ) is the set of equivalence classes of smooth maps ϕ : n M and ϕ , ϕ ' are equivalent if and only if for every smooth function f : M the formal Taylor series at 0 of f ϕ and f ϕ ' are equal in A = [ [ x 1 , , x n ] ] / 𝔞 . In this...