The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Banach Lattices and Positive Operators - Schaefer, H.H.”

Note on "construction of uninorms on bounded lattices"

Xiu-Juan Hua, Hua-Peng Zhang, Yao Ouyang (2021)

Kybernetika

Similarity:

In this note, we point out that Theorem 3.1 as well as Theorem 3.5 in G. D. Çaylı and F. Karaçal (Kybernetika 53 (2017), 394-417) contains a superfluous condition. We have also generalized them by using closure (interior, resp.) operators.

Inverses and regularity of disjointness preserving operators

Y. A. Abramovich, A. K. Kitover

Similarity:

A linear operator T: X → Y between vector lattices is said to be disjointness preserving if T sends disjoint elements in X to disjoint elements in Y. Two closely related questions are discussed in this paper: (1) If T is invertible, under what assumptions does the inverse operator also preserve disjointness? (2) Under what assumptions is the operator T regular? These problems were considered by the authors in [5] but the current paper (closely related to [5] but self-contained) reflects...

Factorization and domination of positive Banach-Saks operators

Julio Flores, Pedro Tradacete (2008)

Studia Mathematica

Similarity:

It is proved that every positive Banach-Saks operator T: E → F between Banach lattices E and F factors through a Banach lattice with the Banach-Saks property, provided that F has order continuous norm. By means of an example we show that this order continuity condition cannot be removed. In addition, some domination results, in the Dodds-Fremlin sense, are obtained for the class of Banach-Saks operators.

On M-operators of q-lattices

Radomír Halaš (2002)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

It is well known that every complete lattice can be considered as a complete lattice of closed sets with respect to appropriate closure operator. The theory of q-lattices as a natural generalization of lattices gives rise to a question whether a similar statement is true in the case of q-lattices. In the paper the so-called M-operators are introduced and it is shown that complete q-lattices are q-lattices of closed sets with respect to M-operators.