Classification of 4-Dimensional Symmetric Planes.
Rainer Löwen (1979)
Mathematische Zeitschrift
Similarity:
Rainer Löwen (1979)
Mathematische Zeitschrift
Similarity:
Salzmann, Helmut (2000)
Beiträge zur Algebra und Geometrie
Similarity:
Günter F. Steinke (1990)
Forum mathematicum
Similarity:
Kroll, Hans-Joachim, Matraś, Andrzej (1997)
Beiträge zur Algebra und Geometrie
Similarity:
Kinga Cudna-Salmanowicz, Jan Jakóbowski (2007)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
H. A. Wilbrink [Geom. Dedicata 12 (1982)] considered a class of Minkowski planes whose restrictions, called residual planes, are nearaffine planes. Our study goes in the opposite direction: what conditions on a nearaffine plane are necessary and sufficient to get an extension which is a hyperbola structure.
Applegate, David, Bixby, Robert, Chvátal, Vašek, Cook, William (1998)
Documenta Mathematica
Similarity:
Jill C.D.S. Yaqub (1972)
Mathematische Zeitschrift
Similarity:
Sten Hansen (1980)
Mathematica Scandinavica
Similarity:
N.L. Johnson (1978)
Aequationes mathematicae
Similarity:
Johnson, N.L. (1989)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Johnson, N.L. (1982)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Rainer Löwen (1981)
Monatshefte für Mathematik
Similarity:
Jan Jakóbowski (2005)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
There are three kinds of Benz planes: Möbius planes, Laguerre planes and Minkowski planes. A Minkowski plane satisfying an additional axiom is connected with some other structure called a nearaffine plane. We construct an analogous structure for a Laguerre plane. Moreover, our description is common for both cases.
Kurtuluş, Aytaç, Olgun, Şükrü (2003)
APPS. Applied Sciences
Similarity:
Günter F. Steinke (1992)
Forum mathematicum
Similarity: