### Classification of 4-Dimensional Symmetric Planes.

Rainer Löwen (1979)

Mathematische Zeitschrift

Similarity:

Rainer Löwen (1979)

Mathematische Zeitschrift

Similarity:

Salzmann, Helmut (2000)

Beiträge zur Algebra und Geometrie

Similarity:

Günter F. Steinke (1990)

Forum mathematicum

Similarity:

Kroll, Hans-Joachim, Matraś, Andrzej (1997)

Beiträge zur Algebra und Geometrie

Similarity:

Kinga Cudna-Salmanowicz, Jan Jakóbowski (2007)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

H. A. Wilbrink [Geom. Dedicata 12 (1982)] considered a class of Minkowski planes whose restrictions, called residual planes, are nearaffine planes. Our study goes in the opposite direction: what conditions on a nearaffine plane are necessary and sufficient to get an extension which is a hyperbola structure.

Applegate, David, Bixby, Robert, Chvátal, Vašek, Cook, William (1998)

Documenta Mathematica

Similarity:

Jill C.D.S. Yaqub (1972)

Mathematische Zeitschrift

Similarity:

Sten Hansen (1980)

Mathematica Scandinavica

Similarity:

N.L. Johnson (1978)

Aequationes mathematicae

Similarity:

Johnson, N.L. (1989)

International Journal of Mathematics and Mathematical Sciences

Similarity:

Johnson, N.L. (1982)

International Journal of Mathematics and Mathematical Sciences

Similarity:

Rainer Löwen (1981)

Monatshefte für Mathematik

Similarity:

Jan Jakóbowski (2005)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

There are three kinds of Benz planes: Möbius planes, Laguerre planes and Minkowski planes. A Minkowski plane satisfying an additional axiom is connected with some other structure called a nearaffine plane. We construct an analogous structure for a Laguerre plane. Moreover, our description is common for both cases.

Kurtuluş, Aytaç, Olgun, Şükrü (2003)

APPS. Applied Sciences

Similarity:

Günter F. Steinke (1992)

Forum mathematicum

Similarity: