Displaying similar documents to “Attractors and asymptotic periodicity of positive operators on Banach lattices.”

Note on "construction of uninorms on bounded lattices"

Xiu-Juan Hua, Hua-Peng Zhang, Yao Ouyang (2021)

Kybernetika

Similarity:

In this note, we point out that Theorem 3.1 as well as Theorem 3.5 in G. D. Çaylı and F. Karaçal (Kybernetika 53 (2017), 394-417) contains a superfluous condition. We have also generalized them by using closure (interior, resp.) operators.

Once more on positive commutators

Roman Drnovšek (2012)

Studia Mathematica

Similarity:

Let A and B be bounded operators on a Banach lattice E such that the commutator C = AB - BA and the product BA are positive operators. If the product AB is a power-compact operator, then C is a quasi-nilpotent operator having a triangularizing chain of closed ideals of E. This answers an open question posed by Bračič et al. [Positivity 14 (2010)], where the study of positive commutators of positive operators was initiated.

Factorization and domination of positive Banach-Saks operators

Julio Flores, Pedro Tradacete (2008)

Studia Mathematica

Similarity:

It is proved that every positive Banach-Saks operator T: E → F between Banach lattices E and F factors through a Banach lattice with the Banach-Saks property, provided that F has order continuous norm. By means of an example we show that this order continuity condition cannot be removed. In addition, some domination results, in the Dodds-Fremlin sense, are obtained for the class of Banach-Saks operators.

Factoring Rosenthal operators.

Teresa Alvarez (1988)

Publicacions Matemàtiques

Similarity:

In this paper we show that a Rosenthal operator factors through a Banach space containing no isomorphs of l.