О частично упорядоченных множествах 1-степеней, содержащихся в рекурсивно-перечислимых -степенях
А.Н. Дегтев (1976)
Algebra i Logika
Similarity:
А.Н. Дегтев (1976)
Algebra i Logika
Similarity:
И.Ш. Калимуллин (2000)
Algebra i Logika
Similarity:
В.В. Вьюгин (1974)
Algebra i Logika
Similarity:
Е.А. Палютин (1977)
Algebra i Logika
Similarity:
Ю.Л. Ершов (1985)
Algebra i Logika
Similarity:
О.В. Кудинов, O. V. Kudinov, O. V. Kudinov, O. V. Kudinov (1996)
Algebra i Logika
Similarity:
М.Г. Перетятькин (1980)
Algebra i Logika
Similarity:
Б.М. Веретенников (1983)
Algebra i Logika
Similarity:
Ю.И. Мерзляков (1968)
Algebra i Logika
Similarity:
С.А. Сыскин (1979)
Algebra i Logika
Similarity:
С.А. Чихачёв (1984)
Algebra i Logika
Similarity:
А.С. Кондратьев (1988)
Algebra i Logika
Similarity:
Н.Д. Подуфалов, И.В. Бусаркина, N. D. Podufalov, I. V.. Busarkina, N. D. Podufalov, I. V.. Busarkina, N. D. Podufalov, I. V.. Busarkina (1996)
Algebra i Logika
Similarity:
С.Ю. Подзоров (1999)
Algebra i Logika
Similarity:
Debopam Chakraborty, Anupam Saikia (2014)
Acta Arithmetica
Similarity:
The relative class number of a real quadratic field K = ℚ (√m) of discriminant d is defined to be the ratio of the class numbers of and , where denotes the ring of integers of K and is the order of conductor f given by . R. Mollin has shown recently that almost all real quadratic fields have relative class number 1 for some conductor. In this paper we give a characterization of real quadratic fields with relative class number 1 through an elementary approach considering the...