О решетке квазимногообразий нильпотентных групп
А.И. Будкин (1994)
Algebra i Logika
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
А.И. Будкин (1994)
Algebra i Logika
Similarity:
В.В. Блудов, V. V. Bludov, V. V. Bludov, V. V. Bludov (1998)
Algebra i Logika
Similarity:
А.И. Будкин (2000)
Algebra i Logika
Similarity:
Б.А. Панфёров (1980)
Algebra i Logika
Similarity:
Ernest Płonka (1974)
Colloquium Mathematicae
Similarity:
Н.Ю. Макаренко, Е.И. Хухро, N. Ju. Makarenko, E. I. Chuchro, N. Ǔ. Makarenko, E. I. Huhro, N. Ju. Makarenko, E. I. Chuchro (1996)
Algebra i Logika
Similarity:
А.И. Созутов (1991)
Algebra i Logika
Similarity:
B. AMBERG, S. Franciosi, F. Giovanni (1995)
Forum mathematicum
Similarity:
Peter Hilton, Robert Militello (1992)
Publicacions Matemàtiques
Similarity:
We identify two generalizations of the notion of a finitely generated nilpotent. Thus a nilpotent group G is fgp if Gp is fg as p-local group for each p; and G is fg-like if there exists a fg nilpotent group H such that Gp ≅ Hp for all p. The we have proper set-inclusions: {fg} ⊂ {fg-like} ⊂ {fgp}. We examine the extent to which fg-like nilpotent groups satisfy the axioms for...
А.Н. Красильников, А.Л. Шмелькин (1981)
Algebra i Logika
Similarity:
Ian Hawthorn (2018)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
In an earlier paper distributors were defined as a measure of how close an arbitrary function between groups is to being a homomorphism. Distributors generalize commutators, hence we can use them to try to generalize anything defined in terms of commutators. In this paper we use this to define a generalization of nilpotent groups and explore its basic properties.
Д.И. Зайцев, Л.А. Курдаченко, А.В. Тушев (1985)
Algebra i Logika
Similarity: