-группы.
В.П. Шунков (1984)
Algebra i Logika
Similarity:
В.П. Шунков (1984)
Algebra i Logika
Similarity:
Е.А. Палютин (2003)
Algebra i Logika
Similarity:
А.В. Васильева (1976)
Algebra i Logika
Similarity:
Elliot Benjamin, Chip Snyder (2023)
Czechoslovak Mathematical Journal
Similarity:
We show that any finite 2-group, whose abelianization has either 4-rank at most 2 or 8-rank 0 and whose commutator subgroup is generated by two elements, is metabelian. We also prove that the minimal order of any 2-group with nonabelian commutator subgroup of 2-rank 2 is .
Ю.И. Мерзляков (1968)
Algebra i Logika
Similarity:
С.А. Сыскин (1979)
Algebra i Logika
Similarity:
Б.М. Веретенников (1983)
Algebra i Logika
Similarity:
А.Н. Дегтев (1976)
Algebra i Logika
Similarity:
И.Ш. Калимуллин (2000)
Algebra i Logika
Similarity:
А.С. Кондратьев (1988)
Algebra i Logika
Similarity:
Е.А. Палютин (1977)
Algebra i Logika
Similarity:
В.В. Вьюгин (1974)
Algebra i Logika
Similarity:
Ю.Л. Ершов (1985)
Algebra i Logika
Similarity:
О.В. Кудинов, O. V. Kudinov, O. V. Kudinov, O. V. Kudinov (1996)
Algebra i Logika
Similarity:
Man-Duen Choi, Pei Yuan Wu (2006)
Studia Mathematica
Similarity:
We completely characterize the ranks of A - B and for operators A and B on a Hilbert space satisfying A ≥ B ≥ 0. Namely, let l and m be nonnegative integers or infinity. Then l = rank(A - B) and for some operators A and B with A ≥ B ≥ 0 on a Hilbert space of dimension n (1 ≤ n ≤ ∞) if and only if l = m = 0 or 0 < l ≤ m ≤ n. In particular, this answers in the negative the question posed by C. Benhida whether for positive operators A and B the finiteness of rank(A - B) implies that...
М.Г. Перетятькин (1980)
Algebra i Logika
Similarity: